HVR-DRIVE™ POCKELS CELL DRIVER

Pockels Cell Driver for Laser Pulse Selection

PRODUCT DATASHEET

The HVR-Drive™ from Gooch & Housego is designed to switch Pockels cells used for pulse management in high repetition rate ultrafast laser regenerative amplifiers.

The HVR-Drive™ can drive Pockels cells at 1/4 λ or 1/2 λ up to 7.5 kV and up to 200 kHz. The driver produces a top-hat waveform with fast rising and falling edges.

Heat load and space requirements are at a minimum due to the use of external power supplies and control electronics.

The HVR-Drive™ measures 136.5x178x70 mm ($5.375\times7.0\times2.8^\prime\prime$) with the standard heat sink for convection cooling. It can also be air-cooled or water-cooled for higher repetition rates.

G&H can supply the driver in different form factors for high volume applications. On/Off trigger inputs can be standard TTL signals or optional optical trigger inputs can be supplied.

We can work with you to customize the driver for your specific application. Options such as remote monitoring, remote shutdown and over-temperature indicators can be supplied.

Key Features
- 0–200 kHz repetition rate pulses
- 1.0–7.5 kV output voltage
- 10–15 ns rise and fall times
- 250 ns–3 µs pulse widths
- Bipolar balanced output

Key Benefits
- Compact footprint
- Reduced heat load
- Easy integration
- Flexible design

Applications
- Metal cutting
- Welding
- Glass cutting
- Sapphire cutting
- Spectroscopy
Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low voltage supply</td>
<td></td>
<td>15.0</td>
<td>18.0</td>
<td>VDC</td>
</tr>
<tr>
<td>Low voltage supply, 200 kHz rep rate</td>
<td></td>
<td>300</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>2 x high voltage supplies</td>
<td>For 7.5kV out, external ± 1875 VDC required(^1)</td>
<td>100</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>TRIGGER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On/Off trigger voltage</td>
<td>Normally 5 V, TTL</td>
<td>4</td>
<td>15</td>
<td>V</td>
</tr>
<tr>
<td>Trigger to output delay</td>
<td>5 V trigger</td>
<td>60</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Pulse width</td>
<td>(subject to 20% duty cycle maximum)</td>
<td>250</td>
<td>3000</td>
<td>ns</td>
</tr>
<tr>
<td>Jitter, trigger to output</td>
<td>2 ns trigger rise time</td>
<td>50</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>OUTPUT PULSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition rate</td>
<td>7.5 kV, 10 pF, water cooled(^2)</td>
<td>100</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>6.0 kV, 10 pF, water cooled</td>
<td></td>
<td>150</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>5.0 kV, 10 pF, water cooled</td>
<td></td>
<td>200</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Ratio of pulse width to period (1/frequency)</td>
<td>20</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Pulse amplitude</td>
<td></td>
<td>1.0</td>
<td>7.5</td>
<td>kV</td>
</tr>
<tr>
<td>Rise/fall times</td>
<td></td>
<td>10</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>ENVIRONMENTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating ambient</td>
<td></td>
<td>0</td>
<td>50</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES

1. Two external high voltage power supplies are required; one positive output, one negative output. For example, to achieve 6 kV output you will need ±1500 VDC input.

2. High voltage current requirements are determined by the pulse width and repetition rate. Rise and fall times vary with output voltage; higher voltages produce longer rise and fall times.

3. Convection cooled, the maximum rep rate is 25 kHz @ 7.5 kV, 37.5 kHz @ 6 kV and 50 kHz @ 5 kV. Water cooled, chiller set to 24 °C, flow rate to 1.5 gal/minute (6 liter/min) nominal.

CAUTIONS

- Do not connect the outputs to ground or damage to the driver will occur.
- The low voltage supply must be on before applying the high voltage inputs.
- The On/Off triggers must not overlap or damage to the driver will occur.

For further information

E: sales@goochandhousego.com
goohandhousego.com

HVR-DRIVE™

Product datasheet ref: HVR-Drive / Revision No. 3.1
As part of our policy of continuous product improvement, we reserve the right to change specifications at any time.