Reprint (R31)

Spectroradiometer Improves Accuracy of Photovoltaic Measurement

Reprinted with permission from Laser Focus World, PennWell Corp.

January 2008
Photonics Frontiers, continued

FIGURE 3. In a purely linear material, the output power is directly proportional to the input power. Two-photon absorption is a nonlinear process that increases in strength with the power level, absorbing a larger fraction of the photons and eventually limiting output power.

Refrigent solids such as calcite now play a role," says Lennos, with the higher birefringence allowing smaller devices. Properties of the materials can be changed by adjusting the flex-synthesis process, unlike calcite.

ZECOTEK
LEADING THE WAY IN PHOTONICS

Presents a new generation of CW green fiber lasers
Zecotek's GFL series covers all known wavelengths in its green spectral range corresponding to conventional ion gas (ArF/Kr) and solid-state (in particular, DPSS) lasers: 515, 521, 529, 531, 532 nm, and offers new wavelengths in the range 515-560 nm (practically any desired wavelength). GFL series green lasers are based on fiber technology providing the following advantages:

- High beam quality and stability
- Compact design & high efficiency
- Turn-key adjustment-free operation
- Broad tunability (optional)
- No water cooling

Applications include either replacement of ion gas and DPSS lasers in well-developed areas or initiation of new technological edges based on the advantages of fiber lasers for the following applications:

- Bio-Imaging
- Fundamental Research
- Materials Processing
- Printing and Imaging

Our Other Products:
- Micro-pixel Avalanche Photo Diode (MAPD)
- Lutetium Fine Silicate (LFS) Crystals
- Vanadate-based Rare-earth Fine Oxide (RFO) Crystals
- Ultrawide Tunable Ti:Sapphire & dye Laser

Visit us booth 41793 at Photonics West from January 22nd to 24th.

Spectroradiometer improves accuracy of photovoltaic measurement

Since the discovery of the photovoltaic effect in 1959 by Alexander Edmund Becquerel, the performance of photovoltaic (PV) detectors has gradually improved from scientific novelty to a potentially viable alternative energy source. Photovoltaics are semiconductor devices that convert light into electrical current through the creation of electron-hole pairs at a p-n junction. Because of incident photons with energy greater than the bandgap energy. Conventional silicon-based devices—which comprise the majority of available devices—have conversion efficiencies of less than 15%. Other materials such as cadmium telluride have shown laboratory efficiencies of almost 30% and even 30%, but are limited in practical application. Until recently, photovoltaic solar energy has been too costly. However, precipitated by international events including increased global demand for energy and concerns about limitations of petroleum sources, recent interest in alternative and renewable energy sources has released attention on and investment in the potential of PV. Active programs are underway, for example, at the National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL; Golden, CO) and by large industrial firms such as British Petroleum (London, England) and Solar Power Group.

Further evidence of this renewed interest is the entry of other industry leaders into the fray such as Applied Materials (Santa Clara, CA; see www.laserfocusworld.com/articles/277743) and record attendance at the recent European Photovoltaic Solar Energy Conference and Exhibition in Milan, Italy. According to the DOE, the worldwide market for PV reached $47 billion in 2003, and according to the DOE.

While it is impossible to reproduce the brightness of the Sun, it is possible to improve the accuracy of a photovoltaic detector's response by integrating a white-source scan using an amorphous-silicon photodiode as a function of illumination follows an exponential curve.

PHOTOVOLTAICS

FIGURE 1. The current response for a commercially available amorphous-silicon photodiode as a function of illumination follows an exponential curve.

GHASSAN E. JABOUR, EVAN WILLIAMS, RICHARD YOUNG, AND ALEXANDRE Y. PONG

BIOGRAPHY: E. JABOUR is a professor at the School of Materials and director of the Center for Advanced Photovoltaics, and Ewan WILLIAMS is a graduate student in the Photovoltaics Materials and Devices group at the Solar Display Center, both at Arizona State University, 1295 S. Foreman Ave., Tempe, AZ 85284, e-mail: jabour@asu.edu. RICHARD YOUNG is vice president of science and technology and ALEXANDRE Y. PONG is vice president of sales and marketing at Canadian Solar, 4832 26th St., Orlando, FL 32811; e-mail: algong@csa.com; www.csac.com.
PHOTOVOLTAICS, continued

Solar Photovoltaic Report from ABS Energy Research (London, England), the PV market is expected to triple over the next three years. Significant contributions to this growth will come once fabrication of efficient and reliable PVs becomes a commercial reality.

New and composite semiconductor materials, polymers, thin-film coatings, and nanotechnology such as quantum dots all show tremendous promise toward the goals of improved conversion efficiencies, lower installation costs, and adaptability to broader applications for PV solar-cell detectors. Critical to the work of improving PV conversion efficiencies is determining and expanding their performance across a wider spectral range. For example, developments in new polymers that absorb light from the ultraviolet through the infrared offer unforeseen and exciting possibilities in terms of conversion efficiencies and applications. Accurate characterization of PV spectral response is central to this objective.

Solar-cell performance and power efficiency

The primary parameter describing the performance of a solar cell is the power-conversion efficiency, as evidenced by the watt-peak rating given to modules. The most standard test used to characterize a solar cell is the current-voltage (I-V) response under illumination, and from this, the power-conversion efficiency of the device can be calculated (see Fig. 1).

There are several other PV parameters of importance. The short-circuit current density, J_{sc}, is a measure of the photocurrent with no external bias applied and the two electrodes connected via an external circuit. The open-circuit voltage, V_{oc}, represents the necessary applied voltage for which no net current passes through the device. There is a point along the response curve for which the product of the voltage and current gives a maximum; this is the point of maximum power and represents the load the cell should drive for optimal output. A rectangle can be created using the origin, the point of maximum power and perpendicular to the axes (shaded box). The ratio of areas for this rectangle and one formed using the origin, V_{oc} and J_{sc} points (dotted box) is known as the fill factor and is calculated as $P_{max}/(V_{oc} \cdot J_{sc} \cdot \text{FF})$. The power conversion efficiency η can be expressed as:

$$\eta = V_{oc} \cdot J_{sc} \cdot \text{FF}/P_{inc}$$

Here, P_{inc} is the incident optical power. It is therefore of great importance to accurately know the incident power to calculate the correct efficiency.

Furthermore, in addition to the illumination source intensity, it is critical to account for the spectrum of the illumination source and its difference from the standard solar spectrum to obtain the “true” power efficiency. A reference cell is most commonly used to establish the intensity of the illumination source used for testing. There may be an error in the measured J_{sc} of the test device arising from differences in the spectrum of the illuminator and/or differences in the spectral response of the reference cell and the device under test. A spectral mismatch factor can be calculated to express this error and is given by:

$$M = \frac{\int SR_{ref}(\lambda)E_{source}(\lambda)d\lambda}{\int SR_{ref}(\lambda)E_{source}(\lambda)d\lambda} = \frac{\int SR_{test}(\lambda)E_{source}(\lambda)d\lambda}{\int SR_{test}(\lambda)E_{source}(\lambda)d\lambda}$$

Here, SR_{ref} is the spectral response of the reference cell, E_{source} is the reference spectral irradiance, E_{test} is the spectral response of the test cell, and E_{source} is the test-source spectral irradiance.

The current spectral irradiance reference is the ASTM G173-03 reference spectra (see Fig. 2). Using a properly characterized reference cell and knowing the test-source spectral irradiance and test-device spectral response allows
Green YAG Lasers for Solar Cell Manufacturing

Since 1996 our 532-nm Nd:YAG laser sources have been used to manufacture PV products.

LeeLaser.com

Lee Laser Nd:YAG lasers at 532 nm set the standard for:
- High output energy
- High efficiency
- High brightness
- Long pump pulse duration
- Excellent Manner
- Standard rated, custom-designed laser head
- Laser and framing system
- Excellent optics
- Custom and standard, custom designs

For more information, call 205-460-2989 or visit LeeLaser.com
PHOTOVOLTAICS, continued

FIGURE 4. The relative response of a PV solar cell at 980 nm without the white-light bias (top) is contrasted to the response of the same cell at 980 nm with a 1 kW/m² white-light bias (bottom). (Courtesy Optronic Laboratories)

detector preamplifier (OL 750-613 from Optronic Laboratories) decouples the DC response of the detector to the bias source so that only the AC component of the response is measured.

Spectral-response measurements

An Optronic Laboratories OL 750D double monochromator spectroradiometer with a white-light bias was used to measure the spectral response of PV cells. Since the bias light is DC and the monochromatic light is AC chopped, the detector response can be measured by locking in to only the AC portion of the detector signal. The white-light bias is a small spot, typically 1 mm in diameter, to ensure that the detector or amplifier is not saturated. The monochromator light is focused to a spot about half the size of the white-light spot and completely within it. The white-light bias level can be set by adjusting the current to the white light lamp.

It is important that the white-light bias coincides with the monochromatic light at the sample. If they do not coincide, the same responsivity is seen in both biased and unbiased conditions. Because the spots are small, alignment is critical. Also, many polycrystalline materials exhibit nonuniform responsivity over the wafer. A small spot is ideal for characterizing the uniformity of such devices (see Fig. 4).

Reflectance and efficiency measurements

Determining the internal quantum efficiency of a PV solar cell requires measurements of the reflectance of the device. Reflectance from such cells is typically composed mainly of specular and some limited diffuse component. Although the diffuse reflectance can be small when compared to the specular component, it can have a large effect on the device quantum efficiency. Adding an assembly to measure the specular and diffuse reflection components such as the OL 750-71 provides measurements of both power response and reflectivity of the test detector, allowing the calculation of external and internal quantum efficiency. The reflectance measurement geometry is suited to specular (mirror-like) samples; the OL 740-70 diffuse reflectance accessory should be used for samples without mirror-like finishes.

Despite continuing polysilicon supply issues, the PV industry continues to grow and mature, with a variety of different materials in the works to further improve conversion efficiencies—in fact, plastic solar cells have been reported with efficiency values exceeding 6% (see www.laserfocusworld.com/articles/294199). All of this underscores the need for accepted, accurate, and meaningful metrology of solar-cell spectral performance evaluated in realistic operating environments. White-light biasing and high-performance monochromatic sources are fundamental to this objective.

REFERENCES

Tell us what you think about this article. Send an e-mail to LFWfeedback@pennwell.com.