Month Year

View all posts »

View all posts »

LighTimes: DOE Publishes 2014 SSL Manufacturing R&D Roadmap

28 Aug 2014

August 21, 2014…The US. Department of Energy published the 2014 Solid-State Lighting Manufacturing R&D Roadmap. The updated Roadmap complements the SSL R&D Multi-Year Program Plan that guides the Product Development and Core Technology R&D programs. One of the roadmap’s goals is to guide the Manufacturing R&D program and help direct funding solicitations for it. The Roadmap also offers guidance for material and equipment suppliers, based on industry consensus about the expected evolution of SSL manufacturing.

Industry feedback for the updated report comes from a series of roundtables with invited experts and from the attendees of DOE’s SSL Manufacturing R&D Workshop that was held in May in San Diego. The 2014 Roadmap adds the discussion of the OLED manufacturing cost model. DOE says it will continue to update the Roadmap annually in collaboration with industry partners, to provide an outline of research and process development priorities, and new analysis as the technology and marketplace evolve.

Download the 2014 Manufacturing Roadmap.

Navigant Consulting conducted the analysis update. Navigant concluded that in the US. the annual source energy savings from LED lighting in 2013 more than doubled from the previous year to 188 trillion British thermal units (BTUs). Navigant points out that this is equivalent to an annual energy cost savings of about $1.8 billion.

While these current energy savings are significant, market penetration is still quite modest. Navigant estimates that LED-based A-lamps make up only about 1 percent of all installed A-lamps. However, the company asserts that growth is happening rapidly. Navigant also reported that from 2012 to 2013 that the US. installed base of LEDs in general lighting applications had more than doubled to about 105 million units.

Navigant further concluded this that the 188 trillion BTU savings is a tiny fraction that of the potential energy savings that complete adoption of SSL lighting in US., 4.1 quadrillion BTU. Navigant says that while widespread adoption may be several years in the future, the potential reveals the need of developing a robust, high-capacity manufacturing capability for SSL. Market adoption is likely to accelerate as prices continue to fall, and unit sales are expected to increase at a much faster rate than revenues, according to Navigant.

In response to this energy-saving opportunity, the DOE launched the SSL manufacturing initiative in 2009 to improve SSL product quality and consistency, establish a strong SSL manufacturing base, and support reductions in SSL manufacturing cost in the US.

Current projects that the DOE Manufacturing Initiative supports include Philips Lumileds’ development of patterned sapphire substrate technology for lighting caliber LEDs, Cree’s development of lower cost integrated LED luminaires, and OLEDWorks’ development of organic light-emitting diode (OLED) deposition technology for OLED lighting products. DOE-supported SSL manufacturing R&D projects cover much of the value chain of SSL production, including designs for lower costs, process improvements, manufacturing equipment, testing, and materials.

The DOE engaged the LED community through a “Round-Table” meeting of invited experts to review the state of LED-SSL manufacturing technology and identify areas for improvement. The DOE followed the meeting with its SSL Manufacturing R&D workshop and a post-workshop conference call held among participants.

The participants drew several conclusions:

  1. Achieving the targeted color point adds complexity and cost to the luminaire manufacturing process especially in applications demanding tight color control.
  2. Long-term color stability is still poorly understood for LED -based lighting products and (probably OLED as well). Mitigating color shift over time adds to the cost of LED lighting products. Furthermore, the participants report concludes that the ability to understand and predict color shift over time would simplify the manufacturing process, reduce manufacturing costs, and increase consumer confidence in LED lighting products.
  3. Luminaire manufacturing is now putting less emphasis on the lamp-fixture paradigm and placing more emphasis on integrated luminaires minimize cost and maximize efficiency.
  4. The report concludes that highly flexible luminaire and module manufacturing will be needed to accommodate the enormous variety of designs that customers demanded. Production lines will have to be efficient and cost-effective, even with relatively low numbers for any given product variant. The required production line improvements may call for innovative and perhaps more flexible manufacturing methods and equipment.
  5. The manufacturing of phosphors and down converters and their process of being applied to LEDs is costly, and innovations in this area could potentially reduce cost, simplify the manufacturing process, improve color quality, increase light output, and improve efficacy.
  6. The domestic OLED community could work together to create a viable OLED lighting manufacturing infrastructure and promote consumer acceptance of OLED products. Larger volume production is required to exercise the supply chain and manufacturing processes in order to identify weaknesses and opportunities.
  7. The OLED community is preparing to introduce products for lighting by examining the barriers in the adoption of LED lighting and understanding the needs of lighting designers and luminaire makers.
  8. OLED fabrication methods including vapor deposition approaches and hybrid approaches are being explored. Efforts are underway to promote a panel fabrication process solution.

The report concluded that currently, the main challenge for LED lighting is to continue ramping up production and drive down costs while maintaining product quality and consistency. The emerging challenge is to demonstrate to consumers the value that LED technology offers in terms of extended lifetime, energy consumption and added functionality while avoiding consumer disappointment.

In the short-term, the expansion of LED lighting manufacturing capacity will require the refinement of existing manufacturing approaches. Longer-term, it will require the introduction of innovative approaches to lighting product design and manufacturing.

The report asserts that the biggest challenge for OLEDs is to develop acceptable, cost-effective manufacturing processes beyond what is being done for the manufacturing of OLED displays and build demand by identifying lighting applications that play to the strengths of OLED technology.